Stakeholder Perspective: SNM

Alexander J.B. McEwan
President-Elect SNM
Professor, Department of Oncology
University of Alberta, Edmonton, Alberta, Canada

¹⁸F-FDG - Molecular Imaging as Anatomical Contrast Imaging?

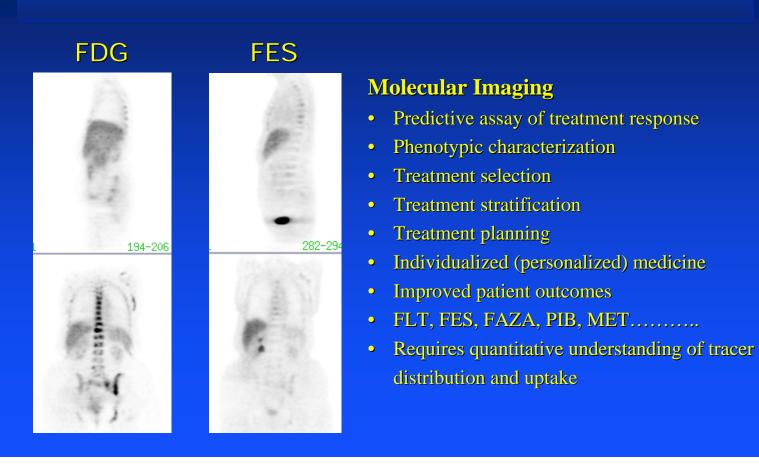
FDG to Predict Response to Gleevec

21 patients with GIST and other STS imaged pre and

8 days post chemo:

EORTC criteria for response

PET response seen in 13/21

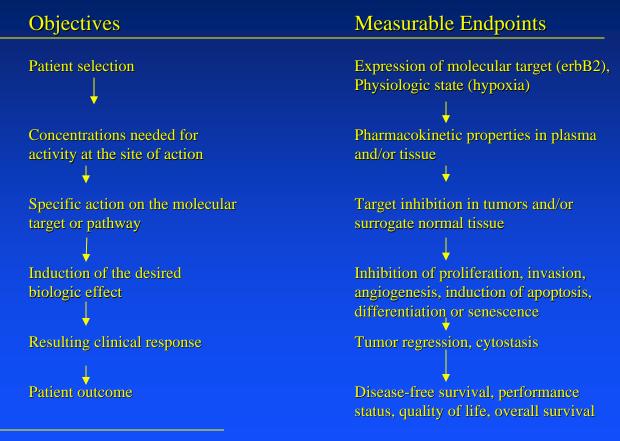

(CT response in 10/21 at 8 weeks)

One year PFS in responders - 92%

One year PFS in non-responders - 12%

Stroobants, et al. Eur J Cancer 2003; 39: 2012 - 2020

Molecular Imaging and Personalized Medicine



Molecular Imaging: Radiotracers in Clinical and Translational Research

- To understand normal functioning of molecules, cells, organs and organisms.
- To assess the biological nature of disease early and throughout its evolution
- To assess progressive developmental, degenerative and disease changes in vivo.
- To facilitate drug discovery and development
- To provide biological information for the development and assessment of innovative therapies.
- To predict, monitor and measure treatment response
- Clinical practice

What is Measurable with Molecular Imaging

Workman P, et al. JNCI, 2006; 98(9):580-598

From Fig 1: Minimally Invasive Pharmacokinetic and Pharmacodynamic Technologies in Hypothesis-Testing Clinical Trials of Innovative Therapies.

Issues Associated with Dissemination of PET Radiotracers/MI into Clinical Practice

- Development of PET tracers
 - Regulations
 - GCP/GMP
- Clinical trials
 - Design, conduct, validation, quantification
 - Definition of response/Outcomes/Imaging biomarkers
 - Outcomes research/Genomic profiling/Treatment planning
- Data confidence
 - Clinical practice issues
 - Health Technology Assessment

SNM Clinical Trials Group: Address Issues Associated with MI Radiotracers

- Development of PET tracers
 - GMP/GCP
- Validation and standardization of quantitative tracer uptake
- Clinical trials
 - Design and conduct
 - Definition of response/Outcomes/Imaging biomarkers
 - Outcomes research/Genomic profiling/Treatment planning
- Integration with other imaging methodologies
- Clinical practice issues
- Health Technology Assessment

Standardization Requirements

- Quantification of radiotracer uptake/PK/PD
 - Must be robust and translatable across platforms and sites
 - Kinetic modelling
 - Absolute μgm/gm/min
 - Quantitative T/B, T/M, T/NT
 - Semi-quantitative SUV
 - Relative
- Validation and standardization of quantification
 - Across platforms
 - Between sites
 - Radiotracer specificity
- Define correlative outcomes required for imaging biomarkers

Three Models for Standardization and Validation of Radiotracer Quantification

- Preclincal phantom studies
- Preclinical-clinical validation
- Clinical outcomes measures

Stage 1: What is Our Current Capability in Measuring Radiotracer Uptake

- 9 12 center study representing all major manufacturers
 - 3 measurement time points
- Two phantoms shipped to each center
 - Long lived Germanium-68 phantom
 - Fillable Fluorine-18 phantom
- · Background and tumor sphere activity
- Data analysis SUV, T/NT ratios
 - Manufacturers software
 - Independent software platform
 - Innovative quantitative approaches

Funded by SNM and CORAR

Stage 1 Outcomes

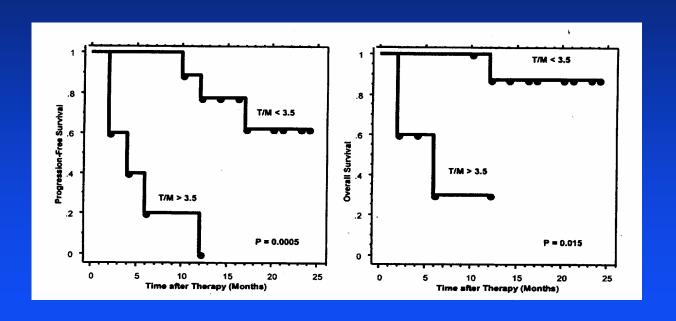
- Cross platform comparison and validation
- Comparison and validation between centers
- Inter-center temporal comparison and validation
- SUV -v- non-SUV based quantification
- Sources of error
- Recommendations for correcting variables

Stage 2a: Correlating Phantom Data with ¹⁸F-FDG Uptake in Patients

- Multi-center study representing all major manufacturers
- Same phantoms as stage 1
- Compare phantom data with FDG uptake
 - Patients with H & N SCC
 - Integrate with ACRIN studies?
- Compare vendor and independent analysis
- Initiate lessons from stage 1

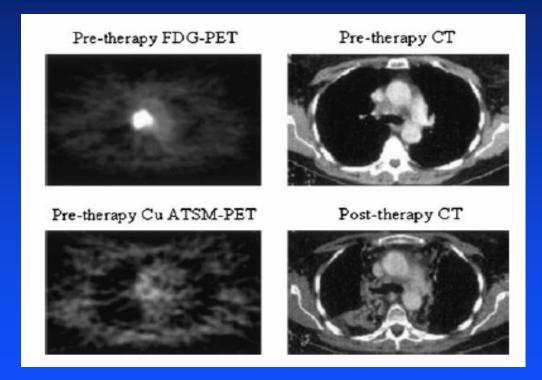
Stage 2b: Correlating Phantom Data with Radiotracer Uptake in Patients

- Multicenter study representing all major manufacturers
- Same phantoms as stage 1
- Compare phantom data with uptake of multiple radiotracers
 - FAZA/F-MISO in patients with H & N SCC, GBM
 - -FLT
 - FES in patients with breast cancer
 - F-18 in patients with bone metastases
- Compare vendor and independent analysis
- Build on data analysis form stages 1 and 2a

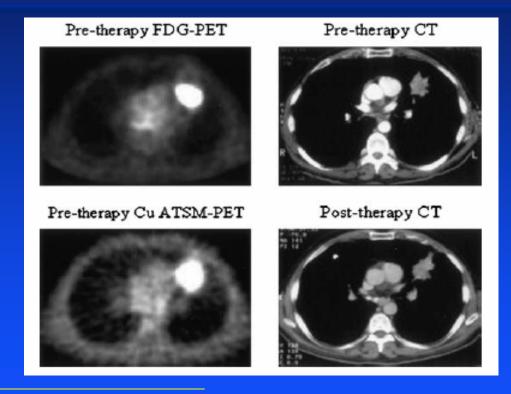

Stage 2 Outcomes

- Validate stage 1 data
- Correlation of phantom and biological data
- Variables between radiotracers
- Can biological in vivo data be rigorously quantified
- SUV -v- non-SUV based quantification
- Sources of error
- Recommendations for correcting variables

Stage 3: Quantifying a Specific Imaging Biomarker and Correlating with Outcome:


Hypoxia imaging for treatment stratification

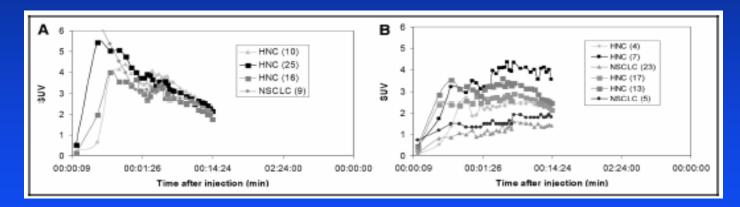
Progression-free Survival and Overall Survival Based on ⁶⁰Cu-ATSM Uptake Using Kaplan-Meier Method


Dehdashti F, et al. Int J Radiation Oncol Biol Phys 2003; 55(5):1233-1238

Responder

Dehdashti F, et al. Eur J Nucl Med Mol Imaging 2003; 30:844-850

Nonresponder

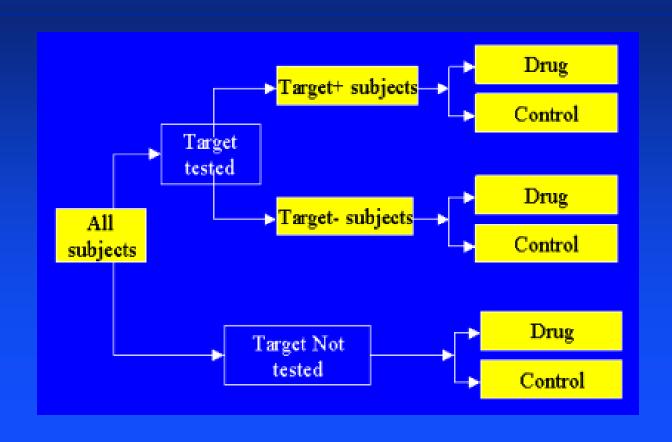


Dehdashti F, et al. Eur J Nucl Med Mol Imaging 2003; 30:844-850

Outcome for Patients with Characteristic Curve Types

Type 1 (washout; no disease recurrence)

Type 3 (accumulation; recurrence in 5/6 patients)



Eschmann S-M, J Nucl Med 2005; 46:253-260

Stage 3 Strategy

- Link with Phase III pharmaceutical trial
- TPZ radiosensitizer/hypoxic cell cytotoxic
- Randomized 2 arm study
 - -TPZ + Cisplatin/RT
 - Cisplatin/RT
- Comparable methodologies to stage 1 and stage 2
- Can we predict treatment response and stratify for appropriate intervention

TRACE Study Imaging Analysis

Sub Study Hypothesis

- That the presence of hypoxia demonstrated by imaging will:
 - Predict failure in the control arm
 - -Be associated with a good outcome in the treatment arm

"What we're going to do is embark on a long process of cultural change--a change that may not happen, but if it doesn't, medicine will be the poorer."

Brian C. Lentle, M.D.

Molecular Imaging Summit, April, 2005, Oak Brook, Ill. RSNA News - July, 2005